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5.1 Introduction: 

Do you know the laws of thermodynamics? You might have learned about the four 

laws of thermodynamics and various thermodynamic parameters like enthalpy, internal 

energy, entropy Gibbs free energy etc. Actually, thermodynamics is an experimental science 

which is concerned with the bulk or macroscopic properties of a system of interest without 

making any reference to the contributions of individual constituent, molecule, ion or atom. 

Statistical mechanics aims to derive the bulk (observable) properties of mater using the laws 

of mechanics applied on the constituent particles. However in statistical thermodynamics we 

deal with system which changes with time in the direction to equilibrium state. The purpose 

of statistical thermodynamics is to understand the behavior of the large assemblies of 

(relatively) simple systems such as molecules in a gas, atoms in crystal in terms of the 

behavior of its constituents.  

Quantum mechanics provides the information about the energy states or levels of a 

molecular system while the statistical mechanics gives the possible arrangements of the 

molecules in various energy states or levels. Therefore, study of statistical thermodynamics 

presumes not only classical thermodynamics but also quantum mechanics and calculus 

(differential and integral). 

In the first section we will introduces the three types of statistics and the basic 

differences between classical thermodynamics & statistical thermodynamics. In the next 

sections we will discuss about ensembles, microstates & macrostares, thermodynamic 

probability and distribution of particles which will help us to describe the behavior of a 

system of large number of particles elegantly. Then you will learn to establish a relationship 

between entropy and thermodynamic probability which bridges the thermodynamics and 

statistical view-point. In the next section, we will derive the Boltzmann distribution law for 

the equilibrium state (i.e., most probable distribution). This introduces a very important 

parameter known as Partition Function, f. Then we will derive few thermodynamic 

parameters in terms of f. You will learn to derive the partition function for few simple 

systems in the next unit. 

5.2 Objectives: 

After studying this unit you will be able to- 

→ Explain the terms- ensembles, microstates & macrostares, thermodynamic 

probability and partition function; 

→ Distinguish between various types of statistics 

→ Compute the therodynamic probability for different types of distributions 

→ Derive the relationship between entropy and thermodynamic probability 



3 
 

→ Derive the Boltzmann distribution law for most probable distribution 

→ Express few thermodynamic parameters in terms of f 

 

5.3 Statistics in Thermodynamics: 

5.3.1 Classical Thermodynamics and Statistical Thermodynamics: 

Classical thermodynamics is concerned with systems composed of large numbers 

molecules, atoms, etc. So any property of the system is a macroscopic one. The method of 

averaging the bahaviour of a large number of individuals is called Statistical method. For 

example, the kinetic energy of a gaseous system at a particular temperature is a statistical 

average of the kinetic energies of the individual molecules. Statistical thermodynamics is 

based on the principle that the thermodynamic properties are the averages of molecular 

properties, and based on statistical methods, it sets up a scheme for calculating these 

averages. Therefore, the branch of science dealing with the calculation of macroscopic 

thermodynamic properties (such as Pressure, Entropy, Internal energy, Gibb’s free energy 

etc.) of systems from the microscopic properties of individual molecules by statistical 

methods is known as Statistical thermodynamics.  Hence, Statistical thermodynamics provide 

a link between microscopic properties of matter (i.e. quantum mechanics) and its bulk 

properties (i.e. classical thermodynamics). So the foremost concept to understand in this unit 

is the differences between classical thermodynamics and statistical thermodynamics which 

are listed in table 5.1. 

Classical thermodynamics Statistical thermodynamics 

Deal with Macroscopic properties of large 

number of molecules 

Computation of Macroscopic properties of 

bulk matter from the data of microscopic 

properties of individual particles 

Study the change of thermodynamic 

parameters (i.e. ΔE, ΔH, ΔU, ΔG etc.) i.e. 

Study of energy transfer in macroscopic 

level 

Try to find out the absolute values of the 

thermodynamic parameters (i.e. E, H, U, G 

etc.) 

Based on the thermodynamics laws Based on probabilistic methods (an average 

method)  

Table 5.1 Difference between Classical and Statistical Thermodynamics 

 

5.3.2 Types of Distribution or Statistics: There are three types of statistics 

depending on different physical situations in nature. 
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1. Maxwell-Boltzmann (or M-B) Distribution: In M-B statistics the particles are 

assumed to be distinguishable and any number of particles may occupy the same 

energy level. 

 

2. Bose-Einstein (or B-E) Statistics: In B-E statistics the particles are assumed to be 

indistinguishable and any number of particles may occupy the same energy level. This 

statistics is obeyed by particles having integral (I= 1, 2, 3, 4 etc) spins. E.g. 4He, N2, 

H2, D2, photons, etc. The B-E statistics is applicable to those particles whose wave 

functions are symmetric in nature. 

 

3. Fermi-Dirac (F-D) Statistics: In F-D statistics the particles are assumed to be 

indistinguishable but only one particle may occupy in a given energy level. This 

statistics is obeyed by particles having half-integral (I=1/2, 3/2, 5/2, 7/2 etc) spins. 

E.g. 3He, NO, protons, electrons etc. The F-D statistics is applicable to those particles 

whose wave functions are antisymmetric in nature. 

 

The differences among the three types of statistics are summarizes in table 5.2. 

M-B Statistics B-E Statistics F-D Statistics 

The laws of 

classical mechanics are 

applicable according to 

which individual 

molecules/atoms have 

definite positions and 

momenta. 

The laws of 

quantum mechanics are 

applicable according to 

which individual 

molecules/atoms have 

only quantized values of 

energy. 

The laws of 

quantum mechanics are 

applicable. 

Particles are 

distinguishable 

Particles are 

indistinguishable 

Particles are 

indistinguishable 

Any number of 

particles may occupy the 

same energy level. 

Any number of 

particles may occupy the 

same energy level. 

Only one particle 

may occupy in a given 

energy level. 

Does not depend on 

the internal structure of 

the particles. 

This statistics is 

obeyed by particles 

having integral nuclear 

spin whose wave 

functions are symmetric 

in nature. 

This statistics is 

obeyed by particles 

having half-integral spin 

whose wave functions are 

antisymmetric in nature. 

The particles 

obeying the M-B statistics 

are called maxwellons or 

boltzmannons. 

The particles 

obeying the B-E statistics 

are called bosons. 

The particles 

obeying the F-D statistics 

are called Fermions. 

Table 5.2 Difference of M-B, B-E and F-D Statistics 
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5.4 Ensemble: 

A collection of a large number of systems which are identical with the system under 

consideration in a number of aspects (such as Volume, number of particles etc.) is called an 

ensemble of system. Ensembles are of three types depending upon the thermodynamic 

variables kept constant. 

Microcanonical ensemble: An ensemble of systems in which each system 

(member) has the same value of number of particle (N), volume (V) and energy 

(E) is called a microcanonical ensemble. In classical thermodynamic sense, each 

system in microcanonical ensemble is like an isolated system. Hence, we can 

imagine a microcanonical ensemble in which each system (member) is separated 

by rigid, impermeable, adiabatic walls so that neither energy nor material particles 

can flow from one system to the other. 

Canonical ensemble: If all the members (systems) of an ensemble have the same 

value of N, V and T, then it is called a canonical ensemble. It can be set up by 

imagining rigid but conducting walls separating the different systems through 

which energy can pass but not the particles. Due to the conducting walls, each 

member of the ensemble has the same temperature, but may not have the same 

energy. Thus each system in a canonical ensemble is like a closed system in the 

thermodynamic sense.  

Grand canonical ensemble: In a grand canonical ensemble, for each system, V, T 

and μ (chemical potential) for each component is same. In thermodynamic sense, 

each member of a grand canonical ensemble is an open system such that matter 

can flow between the systems and the composition of each member may fluctuate. 

Self Assessment Questions: 

SAQ-1. Identify the Maxwellons, Bosons and Fermions from the following 

(i) Electron  (ii)  Protons  (iii)  4
2He  

(iv)  2D    (v)  a gas at high temperature 

SAQ-2. If all the members of an ensemble have the same value of N, V and T, then it is called  

(Tick the correct option)  

(i) Microcanonical ensemble  (ii) Canonical ensemble (iii) grand canonical ensemble 

SAQ-3. In MB statistics, which of the following statements is correct?  

(i) Particles are identical  (ii) Particles are distinguishable  

(iii) Particles are indistinguishable  (iv) Particles are identical but indistinguishable 

SAQ-4. Any number of particles can be accommodated in an energy state for  

(i) MB statistics only.  (ii)BE statistics only  

(iii)  FD statistics only  (iv) Both MB and BE statistics 
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5.5 Macrostate, Microstate, Thermodynamic Probability: 

In thermodynamics, a system is characterized by specific values of density, pressure, 

temperature and other measurable quantities.  The specified values determine the state of the 

system as whole which is called a macrostate. However, for the same density, temperature, 

and so on, the particles of the system can be distributed in various energy levels by different 

ways. Each given distribution of particle is called a microstate of the system. The 

thermodynamic probability  (denoted  by  W)  is  equal  to the  number  of  micro-states 

 which realize a given macrostate. 

Alternatively, each physically distinct ways of assigning the particles/molecules in 

different available energy levels is called thermodynamic probability (W). 

5.6 Distributions of Particles: 

The number of particles in a given energy level is called occupation number (ni). A 

set of occupation numbers represents an instantaneous distribution of a macrostate.  

To describe a distribution of the particles over their possible energy states, we specify 

the states, Ԑ1, Ԑ2, Ԑ3 ……., Ԑi ,…….. Ԑr ; beginning with the lowest state, Ԑ1 first and ending 

with the highest state Ԑr. We then arbitrarily assign n1 particles to state Ԑ1, n2 to Ԑ2 and so on, 

i.e.  

Energy state No.→ 1 2 3 …………... i …………... r 

Energy → Ԑ1 Ԑ2 Ԑ3 …………... Ԑi …………... Ԑr 

Number of particles → n1 n2 n3 …………... ni …………... nr 

Thermodynamic probability (W) is equal to the number of ways of observing a 

distribution with say n1 atoms in Ԑ1, n2 in Ԑ2 . . . ni in Ԑi and so on. We are concern for the 

distribution with highest value of W, called most probable distribution. However, to complete 

the enumeration we must add the restrictions- 

(i)  ==
=

=

N
ri

i 1

in total number of particle is constant; and  

(ii) ==
=

=

Ei

ri

i


1

in total energy of the system is constant. 

5.6.1 Distribution of Maxwell-Boltzmann particles: Maxwellons are 

distinguishable particles. Although any number of maxwellons can occupy in any energy 

level, sometimes we may forced few restrictions during distribution. There may be five cases 

for the distribution of maxwellons. Each situation is illustrated by simple example(s) which 

leads to a general formula for thermodynamic probability. 
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Case I: No restriction, i.e. any number of particles may occupy the same energy level. 

Illustration-1: Find the nos. of ways of distributing 2 particles in 2 energy levels. 

Solution: There are three distributions viz (1, 1), (2, 0) and (0, 2) as follows- 

 

   Distribution-I  Distribution-II  Distribution-III 

However, since the particles are distinguishable (say A & B) the distribution-I can be 

achieved in two ways as follows- 

 

Distribution-I            Distribution-II       Distribution-III 

WI = 2     WII = 1    WIII = 1 

Hence, the total numbers of ways = 4 

Illustration-2: In how many ways may N identical, distinguishable objects be placed in M 

different containers with no limitation on the number per container? 

 

Solution: Because no limit exists, each object can be placed in any of the M containers. 

Therefore, 

W = MN………………… (E-5.1) 

In general, the total numbers of ways of distributing N particles in M energy 

levels is given by (M)N. 

Case II: Restriction is given that only one particle may occupy in an energy level. 

Illustration-3: Find the nos. of ways of distributing 2 particles in 3 energy levels such that 

only one particle can occupy in any energy level. 
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Solution: 

 

Distribution-I            Distribution-II        Distribution-III 

WI = 2     WII = 2     WIII = 2 

Hence, the total numbers of ways = 6 

Illustration-4: In how many ways may N identical, distinguishable objects be placed in M 

different containers with a limit of one object per container? 

Solution: The limitation of one object per container requires N ≤ M. The first object may be 

placed in any of M available containers, the second in (M− 1) available containers, and so on. 

Hence the number of ways for this case becomes 

W = M (M− 1) (M− 2) …………. (M− N + 1) 

Or 
)!(

!

NM

M
W

−
=  

In general, the total numbers of ways of distributing N particles in M energy 

levels such that only one particle can occupy in any energy level is given by – 

)!(

!

NM

M
PN

M

−
= ………………..(E-5.2) 

Case-III: The distribution is given. 

Illustration-5: Find the nos. of ways of distributing 3 particles in 2 energy levels for the 

distribution (2, 1). 

Solution: Let the particles be A, B and C (distinguishable) 

 

Hence, the total numbers of ways = 3 

Illustration-6: In how many ways may N identical, distinguishable objects be placed in M 

different containers such that the ith container holds exactly ni objects? 

Solution: The total number of permutations for N objects is N! However, within each 

container, permutations are irrelevant as we are concerned only with their number rather than 
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their identity. Hence, the number of permutations, N!, overcounts the number of ways by the 

number of permutations, ni !, for each container. Therefore, the number of ways is- 


==

!

!

!......!........!.!.

!

321 ii n

N

nnnn

N
W  

In general, the total numbers of ways of distributing N particles in M energy 

levels with the distribution (n1, n2, n3, ……… ni, …….) is given by – 


==

!

!

!......!........!.!.

!

321 ii n

N

nnnn

N
W ……………………..(E-5.3) 

Remember that, Nnnnnn ii =+++++= ...............321  

Illustration-7: Find the nos. of ways of distributing 10 particles in 5 energy levels for the 

distribution (4, 3, 0, 2, 1). 

Solution: 
!1!.2!.0!.3!.4

!10
=W  

Case-IV: Condition Given (Total energy is given) 

Illustration-8. Find the nos. of ways of distributing 3 particles (distinguishable) having total 

energy of 3E. 

Solution: 

 

Distribution-I            Distribution-II        Distribution-III 

3
!1!.0!.0!.2

!3
==IW    6

!0!.1!.1!.1

!3
==IIW    1

!0!.0!.3!.0

!3
==IIIW  

Hence, the total numbers of ways W =WI +WII +WIII = 3 + 6 + 1 = 10 

Here, distribution-II is the most probable distribution. 

Probabilty for distribution-I, PI = 3/10 

Similarly, PII = 6/10 (Maximum value) and PIII = 1/10 
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Hence the total probability, P = PI + PII + PIII = 1 

(Do Yourself: Draw all possible microstates for the above Distribution-I & II.)  

Case-V: Condition Given; distribution and degeneracies of each energy level are given. 

In general, the total numbers of ways of distributing N distinguishable particles 

having the distribution (n1, n2, n3, ……… ni, …….) in various energy levels (Ԑ1, Ԑ2, Ԑ3, 

……… Ԑi, …….) with degeneracy (g1, g2, g3, ……… gi, …….) is given by- {using equation 

(E-5.1 &E-5.3)} 

==
!

!...........
!

3.
!

2.
!

1!.
)()()()(

321

321

in

n
i

N
n

n

n

n

n

n

NW

igggg
……………(E-5.4) 

Equation (E-5.4) and (E-5.3) are the two forms of Maxwell-Boltzmann’s distribution 

with and without having degeneracy respectively. 

5.6.2 Distribution of Bosons: Bosons are indistinguishable particles, any number of 

particles may occupy the same energy level. Here, we may have two cases depending upon 

with and without having degeneracy. 

Case-I: Without degeneracy of the energy levels. 

Illustration-9: Find the nos. of ways of distributing 2 indistinguishable particles in 2 energy 

levels. 

Solution: There are three distributions viz (1, 1), (2, 0) and (0, 2) as follows- 

 

Since the particles are indistinguishable hence, the total numbers of ways W = 3 

Illustration-10: Find the nos. of ways of distributing 3 indistinguishable particles in 2 energy 

levels. 

Solution: There are four distributions viz (2, 1), (1, 2), (0, 3) and (3, 0) as follows- 
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Since the particles are indistinguishable hence, the total numbers of ways W = 4 

Illustration-11: In how many ways may N identical, indistinguishable objects be placed in M 

different containers with no limitation on the number per container? 

Solution: This fully unconstrained case (indistinguishable objects, no limitation) mandates a 

totally different approach .We begin by initially assuming distinguishable objects labeled 1, 

2, 3. . . N. Let us now arrange these N objects in a row, with the M containers identified and 

separated by (M-1) partitions. As an example, the distribution 

 

1, 2, 3 | 4, 5 | 6 |. . .| N − 1, N 

 

specifies that objects 1, 2, and 3 are in the first container, objects 4 and 5 are in the second 

container, object 6 is in the third container, and so on. Now, regardless of their actual 

arrangement, the maximum number of rearrangements among the N objects and M− 1 

partitions is (N + M− 1)! . However, interchanging the partitions produces no new 

arrangements; thus, we have overcounted by a factor of (M− 1)!. Similarly, because the N 

objects are actually indistinguishable, we have again overcounted by a factor of N!. 

Therefore, the number of ways for this case becomes 

)!1!.(

)!1(

−

−+
=

MN

MN
W  

In general, the total numbers of ways of distributing N indistinguishable 

particles in M energy levels is given by 
)!1!.(

)!1(

−

−+
=

MN

MN
W …………………………. (E-5.5) 

Illustration-12: Find the nos. of ways of distributing 20 particles having integral nuclear spin 

in 15 energy levels. 

Solution: 
)!115!.(20

)!11520(

−

−+
=W  

Case II: If degeneracy is given: 

In general, the total numbers of ways of distributing N particles having the 

distribution (n1, n2, n3, ……… ni, …….) in various energy levels (Ԑ1, Ԑ2, Ԑ3, ……… Ԑi, 

…….) with degeneracy (g1, g2, g3, ……… gi, …….) is given by- 

)!1!.(

)!1(

−

−+
=

ii

ii

gn

gn
W …………………………. (E-5.6) 

Note: For the ith energy level having degeneracy gi, occupying ni indistinguishable particles, 

)!1!.(

)!1(

−

−+
=

ii

ii

i
gn

gn
W  
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5.6.3 Distribution of Fermions: Fermions are indistinguishable particle, only one 

particle may occupy in a given energy level. We may have two cases depending upon with 

and without having degeneracy. 

Case-I: Without degeneracy of the energy levels 

Illustration-13: Find the nos. of ways of distributing 2 Fermions in 3 energy levels. 

Solution: There are three distributions viz (1, 1, 0), (1, 0, 1) and (0, 0, 1) as follows- 

 

Since the particles are indistinguishable hence, the total numbers of ways W = 3 

Illustration-14: In how many ways may N identical, indistinguishable objects be placed in M 

different containers with a limit of one object per container? 

Solution: The limitation of one object per container requires N ≤ M. The first object may be 

placed in any of M available containers, the second in (M− 1) available containers, and so on. 

Hence the number of ways becomes 

W1  = M (M− 1) (M− 2) …………. (M− N + 1) 
)!(

!

NM

M

−
=  

For indistinguishable objects, however, any rearrangement among the N objects is 

unrecognizable. Hence, W1 overcounts the number of ways for indistinguishable objects by a 

factor of N!. Therefore,
)!!.(

!

NMN

M
W

−
=  

In general, the total numbers of ways of distributing N indistinguishable 

particles in M energy levels such that only one particle can occupy in an energy level is 

given by-  

)!!.(

!

NMN

M
CW N

M

−
== ……………… (E-5.7) 

Here, it should be noted that, NM  . If M = N, then W = 1. 

Illustration-15: Find the nos. of ways of distributing 10 particles, whose wave functions are 

antisymmetric in nature, in 15 energy levels. 

Solution: 
)!1015!.(10

!15
10

15

−
== CW  
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Case II: If degeneracy is given: 

In general, the total numbers of ways of distributing N Fermions having the 

distribution (n1, n2, n3, ……… ni, …….) in various energy levels (Ԑ1, Ԑ2, Ԑ3, ……… Ԑi, 

…….) with degeneracy (g1, g2, g3, ……… gi, …….) is given by- 

)!!.(

!

iii

i

ngn

g
W

−
= …………………. (E-5.8) 

Note: For the ith energy level having degeneracy gi, occupying ni indistinguishable particles, 

)!!.(

!

iii

i

i
ngn

g
W

−
=  

Here, it should be noted that, ii ng  . If, ii ng = , then, W = 1. 

Note: if you have not given any characteristics [distinguishable/indistinguishable (wave 

function, nuclear spins)] of the particles, then always assume them as distinguishable. 

 

Self Assessment Qestions: 

SAQ-5. In how many ways two indistinguishable balls may be placed in 3 containers

 

(i) Without any restrictions 

(ii) ball can Only one be in one box 

(iii) The balls are distinguishable 

SAQ-6. Define Thermodynamic Probability. For three distinguishable particles in three boxes 

(i) Write & draw all possible distributions 

(ii) Calculate thermodynamic probability for each distribution 

(iii) Find out the most probable distribution 

 

5.7 Relationship between Entropy and Thermodynamic Probability: 

From the second law of thermodynamics, we have come across a very important state 

function, called the entropy S, which is the measure of disorder in a system. We also know 

that, a thermally isolated system in its equilibrium state has maximum value of entropy. 

According to statistical mechanics too, for such a system in equilibrium is the most probable 

one in the sense that it corresponds to maximum thermodynamic probability, W. Therefore, 

both entropy and thermodynamic probability of a system are maximum in the equilibrium 

state. Thus we can expect a functional relationship between entropy (S) and the 

thermodynamic probability (W) which can be expressed as- 

)(WfS = …………………. (E-5.9) 
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Let us consider a system with total entropy S and total probability W, which is 

obtained by combining two non-interacting systems with entropy S1 and S2 and the respective 

thermodynamic probabilities w1 and w2. 

Since, entropy is an additive property and thermodynamic probability is a 

multiplicative property, we have- 

21 SSS += ………………… (E-5.10) 

21.wwW = …………………. (E-5.11) 

Combining the above equations, we get- 

21)( SSWf +=  

or )()().()( 2121 wfwfwwfWf +== …………….. (E-5.12) 

Differentiating equation (E-5.11), we have 

1221 .. dwwdwwdW +=  

If w1 is constant, then dw1 = 0, we have  

1

2
w

dW
dw = ………………….. (E-5.13) 

Similarly, if w2 is constant, then dw2 = 0, we have  

2

1
w

dW
dw = …………………….. (E-5.14) 

Differentiating equation (E-5.12) w.r.t. w2, keeping w1 constant, we have 

2

2

2

)}({
0

)}({

dw

wfd

dw

Wfd
+=  

2

2

1

)}({
.

)}({

dw

wfd
w

dW

Wfd
= ………………. (E-5.15) 

Now differentiating equation (E-5.15) w.r.t. w1, we get,- 

0
)}({

..
)}({

1

1

1

1 =







+

dW

Wfd

dw

d
w

dw

dw

dW

Wfd
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0
)}({

.
)}({

2

2

21 =







+

dW

Wfd
ww

dW

Wfd
 

0)(.)( =+ WfWWf  

WWf

Wf 1

)(

)(
−=




  

Where prime ( ʹ ) denotes differentiation w.r.t. W. On integration we have- 

CWWf lnln)(ln +−=  

Where, C is a constant. We can write it as- 

W

C
Wf = )(  

Integrating again, w.r.t. W, we obtain- 

0ln)( WWCWf +=  

Using equation (E-5.9) we get,- 

0ln WWCS +=  

From the third law of thermodynamics, we know that the entropy of a system in the 

fully ordered state (W=1) is zero. Therefore W0 = 0, and the entropy is related to the 

thermodynamic probability by the expression- 

 WCS ln= ………………… (E-5.16)  

This is the famous Boltzmann relationship between entropy and thermodynamic 

probability. This equation provides a bridge between macroscopic (thermodynamics) and 

microscopic (Statistical mechanics) view-point. The constant C is identified with the 

Boltzmann constant kB (=1.38x10-23JK-1). 

Identification of the Constant C 

Let us consider a vessel which is divided into two parts by mean of a partition, one 

portion of volume V1 and the total volume V2 (Figure-5.1). If one molecule of ideal gas is 

introduce in the vessel, then the thermodynamic probability of finding the molecule the in the 

portion with volume V1 is equal to 
2

1

V

V
. Now, if we there are two molecules in the vessel, 

then the thermodynamic probability will be, 

2

2

1










V

V
. Similarly, if we have one mole ideal gas 
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molecules, then the probability, 

N

V

V
w 








=

2

1

1 . Now, if we remove the partition, then 

probability of finding one mole molecules in the entire volume V2 is 12 =w .  

 
Figure-5.1 

Using equation (E-5.16), we have- 

1

2
12 ln

w

w
CSSS =−=  

N

V

V
CS 








=

1

2ln …………… (E-5.17) 

Again, the expression for the change of entropy of one mole of a perfect gas on 

isothermal expansion from volume V1 to V2 is - 

N

BB
V

V
k

V

V
Nk

V

V
RS 








===

1

2

1

2

1

2 lnlnln ………….. (E-5.18) 

Where R is the gas constant and kB is the Boltzmann constant kB (=1.38x10-23JK-1). 

Comparing equation (E-5.17) and (E-5.18), we get, 
BkC = . Hence, the entropy and 

thermodynamic probability are related as- 

WKS ln= …………………………… (E-5.19) 

5.8 Stirling Approximation: 

In the study of statistical mechanics, we usually consider a system consisting of very 

large number of particles. If the number is represented by N, the calculation of lnN! becomes 

very laborious. Hence a simple approximation is used for the value of lnN! which is called 

Stirling Approximation.  

ln N! = N lnN – N…………… ( E-5.20) 

5.8.1 Derivation of Stirling Formula: 

We know that,  
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N! = N . (N-1) . (N-2) . (N-3)……………3 . 2 . 1 

or,  N! = 1 . 2 . 3 ………………(N-2). (N-1). N  

  lnN! = ln1 + ln2 + ln3 + …………..+ ln(N-2) + ln(N-1) + lnN 
=

=
N

x

x
1

ln  

In the above summation, except for the first few terms whose values are small, as x 

increases and attains large values, the increase in the value of lnx with the increase in the 

value of x by unity is very small. Hence the summation can be approximately treated as 

continuous and replaced by integration. 


=

=

=

Nx

x

dxxN
1

.ln!ln  

  NNNdx
x

xxxN

Nx

x

N
−=−= 

=

=

ln.
1

.ln!ln
1

1
 

Hence for large values of N 

NNNN −= ln!ln  

This is the Stirling formula. 

5.9 The Maxwell-Boltzmann distribution law: 

Consider a system composed of N distinguishable, non-interacting particles. Let out 

of these N particles n1, n2, n3, ………ni….. particles are to be distributed in energy levels 

E1,E2,….,Ei, …… respectively and these energy levels have g1,g2,…...,gi, ……………… 

number of quantum states correspondingly. i.e.,  

Energy state No.→ 1 2 3 …………… i …………… r 

Energy → Ԑ1 Ԑ2 Ԑ3 …………… Ԑi …………… Ԑr 

Degeneracy→ g1 g2 g3 …………… gi …………… gr 

Number of particles → n1 n2 n3 …………... ni …………... nr 

Since the total energy E and total number of particles N are constant for the system, we can 

write 

   N
ri

i

=
=

=1

in ; …………… (E-5.21) 
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and,   Ei

ri

i

=
=

=


1

in ……………( E-5.22) 

The number of ways in which the groups of particles n1, n2, n3, ………ni….. could be 

chosen from N particles is- 
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i
i n
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N
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1
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!......!........!.!.
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………... (E-5.23) 

Now, ni particles can be distributed in gi states in ( )ni

ig  ways. Considering all the 

values of i, total number of arrangement would be- 
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2 )( …………….. (E-5.24) 

Therefore, the total number of ways W by which all the N particles could be 

distributed among the quantum states is- 
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)( …………… (E-5.4) 

This is the Maxwell-Boltzmann distribution law for N distinguishable particles. 

However, we are interested in finding a distribution that has the maximum value of W.  

Now taking the natural logarithm on both sides of equation (E-5.4) we get,  
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!lnln!lnln ……………… (E-5.25) 

Applying Stirling approximation (i.e., ln x! = x ln x – x, where, x is very large), we get  
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)ln(lnlnln ………………….( E-5.26) 

Now differentiating both sides we get, (Note that, N and gi are constant) 
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For the most probable distribution, d( lnW max) = 0; Therefore- 

  0)(ln).(ln)(ln
11
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ii dnndngWd  

  0).(ln
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……………..( E-5.28) 

Since the system is in equilibrium, total number of particle and the total energy of the 

system are constant. So, from equation (E-5.21) & (E-5.22) are now differentiated to account 

for the imposed constraints during the optimization process. The results are 

0dn
1

i ==
=

=

ri

i

dN …………………… (E-5.29) 

0dn
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i ==
=

=

ri

i

idE  …………………. (E-5.30) 

Multiplying equation (E-5.29) by α and (E-5.30) by β and then subtracting from 

equation (E-5.28), to guarantee independent values of ni. This is called Lagrange’s method. 

Thus, we get- 

0.ln
1

=







−−

=

=

ri

i

ii

i

i dn
n

g
 …………………. (E-5.31) 

where, the unknowns α and β are the so-called Lagrange multipliers, and the entire 

expression is set equal to zero to identify the most probable macrostate. 

Since dni’s are independent of one another, the above equation holds only if,  

0ln =







−− i

i

i

n

g
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 +=ln  

  

e
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g
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+
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  e
i

ii gn
−−

= …………….. (E-5.32) 

Equation (E-5.32) is the Boltzmann distribution law for most probable distribution for 

a macrostate. It gives the occupation numbers of the molecular energy levels for the most 

probable distribution in terms of energies i , the degeneracy gi and the Lagrange’s 

undetermined multipliers α & β. 

5.9.1 Evaluation of the Lagrange’s undetermined Multipliers: 

Evaluation of α: 

According to Boltzmann law,- e
i

ii gn
 −−

= …………………… (E-5.32) 

  ee
i

ri

i

i

ri

i

g
 −−

=

=

=

=

 = .n
11

i  

Since, N
ri

i

=
=

=1

in , we can write 
f

N

g

N

e
e

i

ri

i

i

==
−

=

=

−






.
1

……………(E-5.33) 

Where, the term e
i

ri

i

igf
−

=

=

= .
1

is an important quantity in statistical mechanics, 

known as partition function. When molecules are considered, it is called molecular partition 

function.  

Evaluation of β: 

Combining equation (E-5.32) and (E-5.33), we get- 
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= ……………….( E-5.34) 

This equation gives the fraction of molecules in the ith energy level with energy i . 

The Maxwell-Boltzmann distribution law for N distinguishable particles is- 
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Now taking the natural logarithm on both sides and applying Stirling approximation, we get,  

 
=

=

=

=

−+=
ri

i

ri

i

iii ngnNW
1 1

!lnln!lnln  

 
=

=

=

=

−−+−=
ri

i

ri

i

iiiii nnngnNNNW
1 1

)ln(lnlnln  

   
=

=

=

=

+−+−=
ri

i

ri

i

iiii NnngnNNNW
1 1

)ln(lnlnln  

   
=

=

=

=

−+=
ri

i

ri

i

iiii nngnNNW
1 1

)ln(lnlnln

 

  
=

=

−=
ri

i i

i

i
g

n
nNNW

1

lnlnln ……………….. (E-5.26) 

Putting the value of  
i

i

g

n
from equation (E-5.34), we get- 
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  fNEfNENNNNW lnlnlnlnln +=++−=  ………..( E-5.35) 

Since, WkS ln= , putting the value of lnW, we get- 

fNkEkS ln+=  ……………… (E-5.36) 

Now differentiating equation (E-5.36) w.r.t. E at constant V, we get- 
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Since, e
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From equation (E-5.37) and (E-5.38) we get- 
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……………………. (E-5.39) 

From the 1st and 2nd law of thermodynamics, 

 TdSpdVdEdq =+=  
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……………………. (E-5.40) 

Comparing equation (E-5.39) and (E-5.40) we get- 

kT

1
= ……………………. (E-5.41) 

Thus, the Maxwell-Boltzmann distribution law becomes as- 
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5.9.2 Maxwell-Boltzmann distribution law and the population ratio: 

 The equation (E-5.42) is helpful in calculating the ratio of the populations, i.e., the 

ratio of the number of particles in any two energy levels i  and j .Thus, 

e kT

j

i

j

i
ji

g

g

n

n )(

.
 −

−
=  

Or,  e kT

j

i

j

i
ij

g

g

n

n )(

.
 −

= …………………. (E-5.43) 

Since, 
kT

1
= is positive and if ij   , then ji nn  ; i.e., the lower energy level is 

more populated than the higher energy level. When T increases (i.e. β decreases), the 

population in the higher energy levels goes on increasing. 

 

Self Assessment Questions 

SAQ-7. Calculate the ratio of population at (i) 25°C  & (ii) 250°C between ground and 1st 

excited energy levels of a molecule separated by 10 KJmol-1. 
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SAQ-8. If ni is the number of identical and indistinguishable particles in the ‘i’ th energy state 

with degeneracy gi then M-, B-E and F-D statistics will gives identical  results if 

(i) ii gn =   (ii) ii gn    (iii) ii gn    (iv) independent on the ratio 
i

i

g

n
  

SAQ- 9.  The ratio of the molecules in energy levels depends on 

(i) their energy separation (ΔE) only  (ii)  Temperature of the system only  

(iii)  both ΔE and T    (iv)  does not depends on ΔE and T 

 

 

5.10 Partition Function: 

According to Boltzmann law,- 

eee
ii

iii ggn
 −−−−

== . ……………. (E-5.32) 
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We know that the term β 







=

kT

1
 is a measure of temperature of the system, whereas the 

energy levels ( i ’s) are the characteristics of the system itself. Therefore the quantity 

e
i

ig
−

 .  appearing in the above equation is a characteristic of the system. This is called the 

partition function which is an important quantity in statistical mechanics denoted by f. 

Therefore, the equation (ii) can be written as,-  

f

g

N

n e
i

ii

−

= ………………. ( E-5.34) 

 Significance of Partition Function: 

(i) Let us consider the ith state be the ground state so that 0=i ; where ni = n0 and let 

g0 =1. Then the Boltzmann law i.e., equation (E-5.34) becomes 

fN

n 10 =  

  
0n

N
f =  
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Therefore, the partition function can be defined as the ratio of the total number of 

particles to the number of particles in the ground level. 

(ii) Partition function indicates the mode of distribution of particles in various energy 

levels. 

(iii) ‘f’ is a dimensionless quantity. 

(iv) The lowest value of ‘f’ is 1, at absolute zero when all the particles occupy in the 

ground state. As the temperature is raised, the particles will be populated in the 

higher energy levels and the value of ‘f’ increases accordingly. Therefore ‘f’ is a 

measure of the escaping tendency of the molecules from the ground state. 

(v) The higher is the value of ‘f’, the closer is the spacings of energy levels. 

(vi) When T = 0K, f= 1, i.e., only the ground level is populated; and when →T , 

then →f . Thus, partition function gives an indication of the average number of 

energy levels that are accessible to a molecule/particle at the temperature of the 

system. 

5.10.1 Relation between Partition Function and Thermodynamic Functions: 

Here, we will derive the relations between the molecular/particle partition function, f 

and the different thermodynamic functions. 

(i) Internal energy, E: 

The internal energy is given by 

i

i

E = in

 

Putting the value of ni from the Boltzmann law, 
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Now, differentiating the expression partition function w.r.t. T, we get,  
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From equation (E-5.45) and (E-5.46) we have 
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(ii) Enthalpy, H: 

Similar to internal energy, the expression for enthalpy is given as- 
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ln22 ……….( E-5.48) 

Alternatively, enthalpy is given by, H = E + PV; so, substituting the value of 

E from equation (E-5.47), we get 
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(iii) Heat capacity at constant volume (CV): 

By definition, 
V
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= , therefore substituting the value of E we get, 
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(iv) Heat capacity at constant pressure (CP): 

By definition, 
P
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= , therefore substituting the value of E we get, 
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(v) Entropy, S 

The Maxwell-Boltzmann distribution law for N distinguishable particles is- 
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Now taking the natural logarithm on both sides and applying Stirling approximation, 

we get,  
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Putting the value of 
f

N
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n e
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=   from equation (E-5.34), we get- 
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Since, WkS ln= , putting the value of lnW, we get- 

fNkEkS ln+=  ……………… (E-5.36) 

Putting the value of E from (E-5.47), we get- 
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Alternate derivation for S: 

By definition, dT
T

C
dS V= ; now, integrating both sides between suitable limits, we get 
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Using the value of CV from (…… (E-5.49), we get 
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Partial integration provides 
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In this expression, comparing the temperature-independence term with the constant 

S0, that is the entropy at T=0K 
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(vi) Helmholtz free energy, A: 

Helmholtz free energy or work function (A) is given by, 

TSEA −=  

Substituting the value of S, we get 

fNkTfNk
T
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(vii) Gibbs free energy, G: 

Gibbs free energy (H) is given by, 

PVAPVTSETSPVETSHG +=+−=−+=−= )(  

Substituting the value of A, we get 

PVfNkTG +−= ln …………….. (E-5.53) 

(viii) Pressure, P: 
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Pressure is expressed as,
TV

A
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−= . Since, fNkTA ln−= ; therefore 

differentiating the value of A, we get 
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Self Assessment Questions 

SAQ-10. The unit of molecular partition function is- 

 (i) KJmol-1  (ii) s-1   (iii)  dimensionless  (iv)  cm-1 

SAQ-11. Derive the relationship between Chemical potential (μ) and partition function. 

 

5.11 SUMMARY: 

❖ The total numbers of ways of distributing N distinguishable particles having 

the distribution (n1, n2, n3, ……… ni, …….) in various energy levels (Ԑ1, Ԑ2, Ԑ3, 

……… Ԑi, …….) with degeneracy (g1, g2, g3, ……… gi, …….) is given by- 
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❖ Entropy and thermodynamic probability is connected by the Boltzmann 

equation WkS B ln=  

This relation bridges the gap between thermodynamic and statistical view-

point. 

❖ The Maxwell-Boltzmann (Classical) distribution equation is- 
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❖ The ratio of the populations in any two energy levels i  and j  is given by
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is an important quantity in statistical mechanics, 

known as partition function. 

❖ Various thermodynamic functions are related to the partition function, f as 

follows 
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PVfNkTG +−= ln
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5. 
https://youtu.be/SSLT5pNKuOg?list=PL0xcyW6_Yz

ZMYgoGc_rNnP5RBAAFy6f_7 

 

 

5.13  Hints to the SAQ/CYP: 

SAQ-1. Maxwellons- (v); Bosons- (iii), (iv);   Fermions- (i), (ii) 

SAQ-2. (ii) 

SAQ-3. (ii) 

SAQ-4. (iv) 

SAQ-5. (a) Here, N = 2, M = 3; 6
)!1!.(

)!1(
=

−

−+
=

MN

MN
W  

 (b) Here

 

N = 2, M = 3; 3
)!!.(

!
=

−
=

NMN

M
W  

 (c) Here

 

N = 2, M = 3; 9== NMW  

[Do Yourself: Draw all possible microstates for (a), (b) & (c)] 

SAQ-6. (i) and (ii) The all possible arrangements for three distinguishable particles 

(Let, A, B & C) are listed below. 

Macrostates 

E
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er

g
y
 

L
ev
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s 

 

← Microstates→ 

Nos. of microstates 

!!.!.

!

321 nnn

N
W =  

(1, 1, 1) 

E3→ C B C A B A 
6

!1!.1!.1

!3
==W  

E2→ B C A C A B 

E1→ A A B B C C 

(2, 1, 0) 
E3→ - - - 

3
!0!.1!.2

!3
==W  

E2→ C B A 
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E1→ AB AC BC 

(2, 0, 1) 

E3→ C B A 
3

!1!.0!.2

!3
==W  

E2→ - - - 

E1→ AB AC BC 

(1, 2, 0) 
E3→ - - - 

3
!0!.2!.1

!3
==W  

E2→ AB AC BC 

E1→ C B A 

(1, 0, 2) 
E3→ AB AC BC 

3
!2!.0!.1

!3
==W  

E2→ - - - 

E1→ C B A 

(0, 2, 1) 
E3→ C B A 

3
!1!.2!.0

!3
==W  

E2→ AB AC BC 

E1→ - - - 

(0, 1, 2) 
E3→ AB AC BC 

3
!2!.1!.0

!3
==W  

E2→ C B A 

E1→ - - - 

(3, 0, 0) 
E3→ --- 

1
!0!.0!.3

!3
==W  

E2→ --- 

E1→ ABC 

(0, 3, 0) 
E3→ --- 

1
!0!.3!.0

!3
==W  

E2→ ABC 

E1→ --- 

(0, 0, 3) 
E3→ ABC 

1
!3!.0!.0

!3
==W  

E2→ --- 

E1→ --- 

(iii) The distribution (1, 1, 1) has the maximum value of  thermodynamic 

probability which is  the most probable distribution. 

SAQ-7.  Since degeneracy is not given, assume both energy levels be non-degenerate. 

Thus,  

e kT

n

n 1,0

0

1


−
=  

(i) At 25°C 

036.4
298314.8

10000
11

1
1,01,0

=



=



−−

−

KmolJK

Jmol

RTkT



 

01766.0
037.4

0

1 ==
−

e
n

n
 

(i.e., only 1.766% is populated in the 1st excited state) 



32 
 

(ii) At 250°C ; 6679.0
4037.

0

1 ==
−

e
n

n
 

(i.e., 66.79% is populated in the 1st excited state!) 

SAQ-8. (ii) 

SAQ-9. (iii) 

SAQ-10. (iii) 

SAQ-11. From thermodynamics, the chemical potential, μi of any component is given 

by- 

jnTVi
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=  

Since, from equation (E-5.52), fkTA ln−=

 

jnTVi

i
n

f
kT

,,

ln














−=  

 

**************************‖‖‖**************************

 


